阅读历史 |
请收藏本站网址:3456xs.com

第196节(2 / 2)

加入书签

这真要是成功证明,简直就是数学界第一人了。”

“话说真的能解决吗?”

“这又不是在网上吹牛,没有把握的事谁会干,反正我相信徐神。”

“我觉得还是太冒险了,会场上可都是数学界最权威的专家,万一证明过程存在漏洞被找到,那结果恐怕会太太妙。”

“今晚要有幸见证历史了吗?”

……

徐昀并不知道因为他的报告内容学界和网上都已经炸开了锅。

站在台上将很多人的表情看在眼里,脸上流露出的始终是自信和胸有成竹。

记得他向数学联盟组织提出用这种方式进行自己的报告时,相关理事也显得非常诧异,但最终考虑徐昀作为菲尔兹奖获得者还是满足了这个要求。

加上徐昀的报告内容都在脑子里,是以现场书写的方式进行,以至于开始前并不知道具体内容,甚至大会方面还做好了延长时间的准备。

没办法。

作为菲尔兹奖最年轻的得主,确实能享受些特权。

就凭对数学界做出的贡献。

思绪回转徐昀也不再浪费时间,拿起大会工作人员准备的马克笔,面向写字板开始快速书写他对哥德巴赫猜想的证明过程。

因为相关过程都在他的脑海中,写起来就和照抄没有太大区别。

速度上非常快。

随着右手手肘带动手腕移动,顿时一个个数学字符跃于板上。

组成复杂且缜密的数学公式。

在这刻徐昀仿佛梦回到了高中时期,数学老师苏玉姗在讲台上写题,同学们注视着黑板陷入思考。

只不过眼下他成了老师,而台下学生则全是来自各个国家的数学家。

“命px(1,1)为适合下列条件素数p的个数。”

“x—p=p1”

……

“由(7式),(8式),(9式)及(10式),本引理得证。”

“px(1,1)≥px(x……”

……

注视着徐昀书写的过程,原本不以为意的神情逐渐变得凝重期待。

心底更是被震惊所填充。

“这是拓扑群论?”

“好精妙的思路和过程,真是天才。”

“我的上帝……”

……

“由(28式)、引理8和引理9得到定理1。”

“(1,1)及px(1,1)≥……(logx)2”

“证毕。”

随着徐昀书写完最后一个数学字符,成功完成哥德巴赫猜想1+1的证明,无论场内坐着的权威数学家还是以线上方式参与的学者,此刻都无法按耐住激动的心情纷纷寻找身边能用来验算的东西,想要对徐昀的证明过程进行论证。

对于了解过徐昀拓扑群论的人来说,自然能够从证明过程中看出对拓扑群论的使用。

这说明徐昀已经彻底完善了拓扑群论,并用此方法成功解决哥德巴赫猜想。

如果证明过程真能经受住论证,那么对于整个数学界的价值将不可限量。

可以说数论中的问题都得到解决。

尽管徐昀已经超了报告时间,但这会显然已经没有人会去关注这点,哪怕是接下来要进行报告的人,都完全被台上的证明过程吸引。

甚至顾不上自身形象直接跑到台上近距离研究。

使得整个会场显得非常混乱。

不知过去多长时间,其中几位从事数论研究的数学界权限学者相互对视一眼,均能从对方神情中看出那激动狂热的情绪。

“我认为整个证明过程没有问题,拓扑群论不但是成立的并且还能用于数论问题的证明。”

“我同意。”

≈lt;div style=≈ot;text-align:center;≈ot;≈gt;

≈lt;script≈gt;read_xia();≈lt;/script≈gt;

↑返回顶部↑

书页/目录